LOY

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Com. DEGREE EXAMINATION – ACCOUNTING AND FINANCE

UAF 2301 - ELEMENTS OF OPERATIONS RESEARCH

Date: 26-04-2025	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM		

		S	SECTION A	A - K1 (CO1)	
	Answer ALL the Questions				$(10 \times 1 = 10)$
1.	Answer the following				
a)	Define Operations Research.				_
b)	State two importance of OR.				_
c)	Contrast the relationship between	en the ma	nager and (OR specialist.	
d)	Recall the meaning on 'Slack V	/ariable'.			
e)	Write the steps involved in LPI	P formula	tion.		
2.	MCQ				
a)	Operations research analysts do	not			
	a. Predict future operations		1	o. Build more than one mode	el
	c. Collect relevant data			d. Recommend decision and	d accept
b)	Linear Programming is a				
	a. Constrained optimization tec	hnique	b. Techni	que for economic allocation	of limited resource
	c. Mathematical technique		d. All of t	he above	
c)	To proceed with the Modified	Distribution	on Method	algorithm for solving an tran	sportation
	problem, the number of dummy	y allocatio	ons need to	be added are	
	a. n b. n-1	c. 2n-1	d. n-2		
d)	The non basic variables are cal	led			
	a. Shadow cost	b. C	Opportunity	cost	
	c. Slack variable	d.	Surplus var	iable	
e)	The slack variables indicate				
	a. Excess resource available	b. S	hortage of	resource	
	c. Nil resource	d.]	Idle resourc	ee	
		SE	ECTION A	- K2 (CO1)	_
	Answer ALL the Questions				$(10 \times 1 = 10)$
3.	True or False				
a)	OR methods and techniques are	e only app	olicable to b	ig enterprises.	
b)	The feasible region of a LP pro	blem witl	n two unkno	owns may be bounded or unl	ounded.

c)	In transportation problems, there are supply constraints for each destination.
d)	Transportation problem applies to situations where a set of commodities is to be transported from
	source to another.
e)	Two-person zero sum game without saddle point is called pure strategy games.
4.	Fill in the blanks
a)	The area of operations research that concentrates on real-world operational problems is known as
	·
b)	While solving a LP graphically the area bounded by the constraints is called
c)	To resolve degeneracy at the initial solution, a very small quantity is allocated in cell.
d)	When the sum of gains of one player is equal to the sum of losses to another player in a game, this
	situation is known as
e)	For finding an optimum solution in transportation problem method is used.
	SECTION B - K3 (CO2)
Ans	wer any TWO of the following in 100 words each. (2 x 10 = 20)
5.	Interpret the following statement - "Mathematics of Operations Research is Mathematics of
	Optimization".
6.	Draw a feasible region on a graph satisfying the following restraints.
	Minimum value function $z = 20x1+10x2$ subject to
	$x1+2x2 \le 40$
	$3x1+x2 \ge 30$
	$4x1+3x2 \ge 60$
	$x1,x2 \ge 0$
7.	A company has four factories from which it ships its product units to four warehouses W1, W2,

W3, and W4 which all the distribution centres. Transportation costs per unit between various combinations of factories (F1,F2,F3, and F4) and warehouses are .

Factories	Wareho	use	Availabilities		
ractories	W1	W2	W3	W4	Availabilities
F1	48	60	56	58	140
F2	45	55	53	60	260
F3	50	65	60	62	360
F4	52	64	55	61	220
Requirements	200	320	250	210	

Find the initial feasible solution of the above transportation problem by VAM.

8. Solve the game whose pay-off matrix

	В			
A		I	II	III
	I	2	4	11
	II	7	4	2

SECTION C – K4 (CO3)

Answer any TWO of the following in 100 words each.

 $(2 \times 10 = 20)$

- 9. Classify all the basic requirements and their relationships in LPP formulation.
- 10. Briefly explain the main characteristics of Operations Research.
- 11. Solve the following game:
 - (i). Pure strategy:

Player	Player B						
	12	1	30	-10			
	20	3	10	5			
A	-5	-2	25	0			
	15	-4	10	6			

(ii). Mixed strategy: $\begin{array}{ccc}
3 & -2 \\
-2 & 5
\end{array}$

12. A project work consists of four major jobs for which four major contractors have submitted tenders. The tender documents quoted in thousands of Rupees are given with the matrix as

Jobs						
		J1	J2	J3	J4	
Contractors	C1	15	27	35	20	
	C2	21	29	33	17	
	С3	17	25	37	15	
	C4	14	31	39	21	

Find the assignment which minimises the total of the project cost. Each contractor has to be assigned one job.

SECTION D – K5 (CO4)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

13. An animal feed company has to produce 200 kgm. Of a feed mixture consisting of two ingredients X1 and X2. X1 costs Rs. 3 per kgm and X2 Rs. 5 per kgm. Not more than 80 kgm of X1 can be used and at least 60 kgm of x2 must be used. Using simplex technique find how much of each ingredient should be used in the mix of the company to minimise cost. Also determine the cost of optimum mix.

- 14. a). Critically evaluate the scope of the Operations Research. (10 Marks)
 - b). Following is the pay off matrix for player A (10 Marks)

	Player B						
		B1	B2	В3	B4	B5	
	A1	2	4	3	8	4	
Player A	A2	5	6	3	7	8	
	A3	6	7	9	8	7	
	A4	4	2	8	4	2	

Using dominance property, obtain the optimum strategies for both the players and determine the value of the game.

SECTION E – K6 (CO5)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

- 15. Formulate your own LPP model in maximization profit with suitable real-life cases.
- 16. Construct the optimality solution to the following transportation problem.

Destinations	Origin	S	Requirement		
	A	В	С	D	
1	7	4	3	4	15
2	3	2	7	5	25
3	4	4	3	7	20
4	9	7	5	3	40
Availability	12	8	35	25	80/100
